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Previously

Probabilistic models prescribe the probability measure of a random
experiment

one of the many ways to achieve that is to specify the pdf (or pmf) of
a collection of random variables

a deep probabilistic model uses NNs to parameterise this pdf

For parameter estimation, we decided to employ MLE

with a tractable and differentiable likelihood function, gradient-based
search for NN parameters gives us a general purpose mechanism to
approach supervised learning

Finally, once the probabilistic model is fully specified (which includes
parameter estimation), together with a decision rule, it can power
applications (tasks).
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Goals for this session

1 Prescribe joint distribution involving discrete and unobserved random
variables

2 Estimate parameter via gradient-based MLE

3 Recognise the role of a model’s posterior distribution in parameter
estimation

4 Apply amortised variational inference

5 Derive gradient estimators for deep discrete latent variable models
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Outline

1 Modelling Random Experiments

2 Discrete Latent Variables

3 Exact Inference

4 Variational Inference
Deriving VI with Jensen’s Inequality
Deriving VI from KL Divergence

5 Neural variational inference

6 Diagnostics



Modelling Random Experiments

Modelling observed random variables

Our goal is to learn a distribution over a set of observed random variables.

Observed random variables are the result of random experiments that have
already happened: e.g., sentences in a collection of news articles, number
of stars in a product review.
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Modelling Random Experiments

Modelling unobserved random variables

Unobserved random variables are variables that are

observable in principle, but not available for observation
(e.g., the topic of a piece of text, a semantic graph)

unobservable (e.g., a 100-dimensional sentence embedding)

they help us prescribe and even estimate our models.

Our goal is to learn a distribution over observed and unobserved rvs

make explicit assumptions about statistical dependence

discover hidden structure

mimic intuitions/knowledge about the data generating process

deal with missing data

estimate uncertainty about predictions

Deterministic predictors may also be available.
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Unobserved random variables are also called latent variables.

For those interested in Bayesian statistics, note that the presence of un-
observed random variables does not imply Bayesian modelling. Bayesian
principles are a collection of ideas organised in what is called the Bayesian
Theory (or Bayesian Decision Theory) for rational decision making under
uncertainty (Bernardo and Smith, 2009). These ideas may cross paths
with many aspects of our ML solutions.
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Discrete Latent Variables

Latent Structure and Over-Dispersion

We found some old manuscripts in an excavation site, historians began
labelling them for publication date.
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Marginally (left), it looked like our observations could have been drawn
from a Poisson distribution.
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Left: publication date of documents in the labelled collection.

Our historians claim that above some threshold k a document was likely
written after 1699 (when Thomas Savery demonstrated his first steam
engine to the British Royal society).

Right: data as a function of the frequency of the word steam.

Plotting two streams of data under such criterion reveals what could have
been 2 different Poisson distributions.
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But they might also have been the result of mixing (right) into one
population draws from two different Poisson distributions.
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Left: publication date of documents in the labelled collection.

Our historians claim that above some threshold k a document was likely
written after 1699 (when Thomas Savery demonstrated his first steam
engine to the British Royal society).

Right: data as a function of the frequency of the word steam.

Plotting two streams of data under such criterion reveals what could have
been 2 different Poisson distributions.
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The way a model views the data tells us something about latent factors
that account for (cause or correlate with) observed variance.
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Left: publication date of documents in the labelled collection.

Our historians claim that above some threshold k a document was likely
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Discrete Latent Variables

“Oh, latent variables are like hidden units, right?”

Latent structure here has to do with a partitioning of the probability space
in terms of intermediate outcomes that depend on one another.

Hidden layers in an NN output deterministic transformations of their
observed inputs. They are not statements about statistical dependence.

Example:

Y |h ∼ Poisson

exp

(
D∑
i=1

wihi

)
︸ ︷︷ ︸

shallow NN



any one draw comes from the exact same Poisson.
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To reveal latent structure that is likely supported by observations, we need
to postulate a joint distribution where observations and latent variables
interact.

‘Interacting’ is a matter of statistical dependence.



Discrete Latent Variables

Latent Structure and Multimodality

For a few manuscripts, we obtained labels from multiple experts.
16

00
16

10
16

20
16

30
16

40
16

50
16

60
16

70
16

80
16

90
17

00
17

10
17

20
17

30
17

40
17

50
17

60
17

70
17

80
17

90
18

00

Decade

0

100

200

300

400

500

600

Co
un

t

observations

16
00

16
10

16
20

16
30

16
40

16
50

16
60

16
70

16
80

16
90

17
00

17
10

17
20

17
30

17
40

17
50

17
60

17
70

17
80

17
90

18
00

Decade

2

4

6

8

10

12

14

16

18

Co
un

t

Book42

Left: observations for Y across the collection. Right: observations for Y given doc is book-42.

a unimodal conditional Y |doc seems inappropriate.
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When we plot observations for Y (e.g., left) we see the data marginally.

If we intend to model the data conditionally, that plot won’t help us pick a
family. That is because our choice should be informed by plots of the kind
Y |doc. If we group our data into bins, where bin membership depends on
matching a specific value of doc, more often than not our bins will each
contain a single data point. Should we conclude that conditionally our
data can be seen as deterministic? By no means!

Be aware of sneaky modelling assumptions. The combination of ‘1 bin
per unique document‘ and ‘one plot per bin‘ is a modelling choice (for
visualisation purposes, but still). One that suffers from data sparsity so
tremendously that it makes a random variable look deterministic. Con-
cluding that we can model the data deterministically is in fact an instance
of overfitting (by humans).

Note that sometimes we can construct more meaningful Y |doc plots that
reveal the stochastic nature of the data. For example, if we have direct
access to the mechanism by which observations are generated, we can fix
doc and draw Y multiple times (rightmost plot on the slide).



Discrete Latent Variables

“But NNs can, in principle, learn anything, right?”

Not quite. We identify a probability measure by parameterising a joint pdf
(or pmf). Thus our models are limited by the expressiveness of the families
we choose.
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Left: data look unimodal and could have been drawn from a Poisson.

Right: data look bimodal and a single Poisson seems less likely.
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Discrete Latent Variables
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Left: data look unimodal and could have been drawn from a Gaussian.

Right: data look bimodal and a single Gaussian seems less likely.
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Discrete Latent Variables

Can we combine simple distributions?

We can however mix K members of each family to get a good fit:

For example, with K = 2

Z |b ∼ Bernoulli(b)

Y |λ, b ∼ Poisson(λz)

Z |b ∼ Bernoulli(b)

Y |µ, σ, b ∼ N (µz , σ
2
z )
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This is known as a mixture model. The specific ones on the slide combines
two conditional distributions, namely, Y |Z = 0 and Y |Z = 1. The model
mixes its conditional components stochastically, a process controlled by
a distribution over components, whose probabilities p(z |θ) are known as
mixing weights. That is, with probability p(z |θ) the component Y |Z = z
generates a draw in Y. In this example, p(Z = 1|θ) = b and p(Z = 0|θ) =
1− b.

For K > 2 components, Z ∼ Cat(π1, . . . , πK ), thus p(z |π) = πz .



Discrete Latent Variables

Mixture model

A mixture model assigns probability density

pZY (z , y |θ) = pZ (z |θ)Y |Zp(y |z , θ)

to joint outcomes in Z × Y. That is, it prescribes a joint distribution over
observed and unobserved random variables.
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A mixture model encodes the assumption that data points are each drawn
from one of a finite number of independent distributions.

The latent variable Z captures this unobserved component assignment. It
is governed by a distribution we call the prior. Oftentimes this is as simple
as a uniform distribution over the sample space Z.

Given an observation y drawn from the mixture, we can infer a distribution
over component assignments by basic probability calculus, this very famous
result is known as Bayes rule:

p(z |y , θ) =
p(z , y |θ)

p(y |θ)
=

p(y |z , θ)p(z |θ)∑
z′∈Z p(y |z ′, θ)p(z ′|θ)

Note that this posterior pdf p(z |y , θ) involves the marginal pdf p(y |θ),
which we discuss next.



Discrete Latent Variables

Prescribing Flexible Distributions

The marginal distribution of the mixture model is potentially multimodal
and exhibits richer covariance structure. It assigns probability density

p(y |θ) =
K∑

z=1

p(z |θ)p(y |z , θ)

to an outcome y ∈ Y by marginalisation of assignments z ∈ Z of the
latent random variable.

Marginal inference for the MM scales linearly in the number of
components. This is a key type of computation, for example, indispensable
for parameter estimation / learning via maximum likelihood.
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Say we have a dataset D of N i.i.d. observations for Y . MLE depends on
the log-likelihood function, which in turn depends on assessments of the
marginal probability of each observation:

LD(θ) =
N∑

n=1

log p(y (n)|θ)

=
N∑

n=1

log
K∑

z(n)=1

p(y (n), z (n)|θ)

=
N∑

n=1

log
K∑

z(n)=1

p(y (n)|z (n), θ)p(z (n)|θ)



Discrete Latent Variables

Posterior component assignment

Given an observation y we can infer a distribution over component
assignments via Bayes rule

p(z |y , θ) =
p(z , y |θ)

p(y |θ)
=

p(y |z , θ)p(z |θ)∑
z ′∈Z p(y |z ′, θ)p(z ′|θ)

MMs are one of the first options when it comes to organising massive
collections of unlabelled data into smaller groups (clustering).
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Here is a mixture model (3 Poisson components) of our historical data.

Components in a mixture model are not labelled with self-evident informa-
tion such as ‘pre-steam-engine’ and ‘post-steam-engine’, but sometimes
by inspecting likely component assignments we can recognise some salient
features data bring data points together under a certain component. We
can also use it to target annotation efforts, for example, to avoid under-
representing certain decades (in our running example).

Labelling components with self-evident information can be done by experts
with assistance of posterior queries or even semi-automatically by extend-
ing mixture models in interesting ways. See LDA (Blei et al., 2003), for
example.



Discrete Latent Variables

Predictors are welcome

It is also possible to use mixture models in conditional models:

p(z , y |x , θ) = p(z |x , θ)p(y |x , z , θ)

and we may use x in different ways, e.g.

p(z , y |x , θ) =p(z |θ)p(y |x , z , θ)

p(z , y |x , θ) =p(z |x , θ)p(y |z , θ)
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Whether to use predictors to parameterise mixing weights, the conditional
model, or both will depend on the application.

‘Parameterising mixing weights’ means specifying a distribution over K
mixture components, e.g.

Z |x ∼ Cat(g(x ; θ))

An alternative to giving control of mixing weights to a neural network,
or fixing the weights to something superficially intuitive (like a uniform
distribution), is to prescribe a prior distribution over the mixing coefficients.
This would get you very close to Bayesian realms. Do you know any
distribution which has the space of K -dimensional probability vectors as
support?



Discrete Latent Variables

Semi-supervised learning

Suppose some documents are annotated and others are not (as in the
example), and say we model generatively.

For labelled documents, we observe (x , y) whose joint probability is

pXY (x , y |θ) = pY (y |θ)X |Y p(x |y , θ)

and the marginal probability of an unlabelled document x is

pX (x |θ) =
∑
y∈Y

pY (y |θ)pX |Y (x |y , θ)

For a countably finite set Y, this is a mixture model!

This is a very special mixture model for its components are labelled with
self-evident information (e.g., decades).
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A generative model of this kind can be thought of as a classifier (the
task point of view), we need only apply Bayes rule to obtain a conditional
p(y |x∗, θ) that can power a decision rule for a novel document x∗.

But, above all, a generative model of this kind is a model of all of our
observations (the random experiment point of view). Our observations are
indeed a collection of documents, where some documents (very few) are
labelled for decade. When we model conditionally we call the labelled in-
stances training data and ignore all unlabelled instances (the vast majority
of our observations).

Besides powering a classification rule, the generative formulation could be
used to shed light onto vocabulary shifts over the decades. One way to
specify the component p(x |y , θ) is to assume it generates a document by
drawing words independently given a decade-specific parameter θy . That
is, Xi |Y = y ∼ Cat(θy ) for i = 1, . . . , |x |.



Discrete Latent Variables

Competition or cooperation?

In a mixture model the components compete to generate a data point.
This means they cannot cooperate to account for some observed variance.

Sometimes, however, we want to stipulate the presence of a number of
latent factors that together contribute to our observations distributing the
way they do. Think of it in terms of clustering: sometimes we need
overlapping clusters, or rather, attributes.

For example, our documents are scientific documents, and the period in
consideration covers the European Scientific Revolution, as it came to be
named. A number of inventions and new ideas marked this period.
Documents were likely influenced by subsets of those ideas, rather than
any singe idea in particular.
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Like in mixture models we can recognise two roles for the class of models
we are about to develop.

They can serve task-driven goals and power models that can predict at-
tributes of an input (e.g., attributes of product, aspects of review, mor-
phological features of a word).

They can serve knowledge-seeking goals and power inferences about latent
structure that account (cause or correlate with) observed variance (e.g., in
what latent aspects/dimensions are data points related).



Discrete Latent Variables

Latent factor document model

Let us consider a latent factor model for document modelling:

a document x = (x1, . . . , xI ) consists of I i.i.d. categorical draws from
that model

the categorical distribution in turn depends on binary latent factors
z = (z1, . . . , zD) which are also i.i.d.

Zj ∼ Bernoulli(α) (1 ≤ d ≤ D)

Xi |z ∼ Categorical (f (z ; θ)) (1 ≤ i ≤ I )

Here f (·; θ) is an NN and θ its parameters.
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To keep the model simple we will assume Xi ⊥ Xj |Z for i 6= j . We could,
however, relax this conditional independence if we wanted. For example,
we could model Xi |z , x<i ∼ Cat(f (z , x<i ; θ)).



Discrete Latent Variables

Graphical model

Joint distribution: independent latent variables

x1 x2 x3 x4

z1 z2 z3

α

I omit θ from the graphical model, but every Xi |z depends on it.
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Suppose, for example, D = 3 and I = 4.

Posterior

x1 x2 x3 x4

z1 z2 z3

Marginal

x1 x2 x3 x4

I’m omitting θ and α from the graphical models.



Discrete Latent Variables

Intractable Marginals

In the latent factor model, marginalisation takes time O(2D)

p(x |α, θ) =
∑

z∈{0,1}D
p(z |α)p(x |z , θ)

=
∑

z∈{0,1}D

D∏
d=1

Bern(zd |α)
I∏

i=1

Cat(xi |f (z ; θ))

As a consequence, we cannot assess log p(x |α, θ) nor its gradient.
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Thinking ahead: if we cannot assess log p(x |α, θ) for an observation x , nor
its gradient, how are we going to estimate parameters for this model?



Discrete Latent Variables

Combinatorial Latent Structure

The posterior of the latent factor model reveals attributes that are relevant
to an observation.

Sampling from it can help discover discrete factors of variation (e.g.
morphological attributes of a word).

Unfortunately, the posterior in this case is a Gibbs distribution whose
parameter is intractable to compute

its natural parameter has length 2D

its log-normaliser requires a summation over z ∈ {0, 1}D
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Discrete Latent Variables

Applications

Alignment Learn to match two data structures (e.g., word alignment,
phrase alignment, visual question answering).

Data: 〈x1, . . . , xI 〉 and 〈y1, . . . , yJ〉

Generate each part of y using a subset of the parts of x .

this can be a mixture model

or a latent factor model

and there can be constraints on the parts (e.g., disjoint)
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(Rios et al., 2018; Deng et al., 2018; Kawakami et al., 2019)



Discrete Latent Variables

Applications

Latent attribution What parts of the input (or of a computation graph)
affect predictions.

Data: 〈x1, . . . , xI 〉 and y

Zi ∼ Bern(α)

Y |x , z ∼ Cat(f (x � z ; θ))

x could also be every hidden state internal to a given NN, and y could be
that NN’s output y = g(x ;φ)
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(Lei et al., 2016; Bastings et al., 2019; Cao et al., 2020)



Discrete Latent Variables

Applications

Compositionality Learn a computation graph.

Sample a structure z from a prior or conditional distribution Z |x and let
this structure determine a composition function to parameterise a
distribution Y |x , z . This can be used for semi-supervised learning of
syntactic/semantic representations, for learning to solve arithmetic
expressions, interpretable text classifiers, etc.
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(Yogatama et al., 2017; Corro and Titov, 2018; Niculae et al., 2018;
Havrylov et al., 2019)



Discrete Latent Variables

Applications

Controllable generation Learn to affect a conditional generator by
controlling a latent prompt.

For example, translation models parameterise a conditional distribution
Y |x , θ over translations of a given input x .

The source may contain a certain word (e.g., doctor), and the target
language gender-marks nouns. The source sentence does not contain
enough information to resolve the ambiguity, wouldn’t it be nice to have a
mechanism, other than requiring the user to produce a less ambiguous x ,
to control inflections?
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(Hu et al., 2017; Zhou and Neubig, 2017; Ataman et al., 2020)
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Discrete Latent Variables

Summary

Mixture model (‘learning clusters’)

Latent factor model (‘learning attributes or overlapping clusters’)

Applications:

unsupervised learning (e.g., word alignments, LDA, IBP)

semi-supervised learning (e.g., generative classifiers, disentanglement
learning)

transparency (e.g., latent rationales)
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Examples:

• word alignments (Brown et al., 1993; Vogel et al., 1996; Rios et al.,
2018)

• LDA (Blei et al., 2003)

• IBP (Ghahramani and Griffiths, 2006)

• semi-supervised deep generative models (Kingma et al., 2014; ?)

• latent rationales (Lei et al., 2016; Bastings et al., 2019)
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Exact Inference

Latent Variable Models

When talking about some generic model I will follow this convention

X is an rv taking on values in X
x ∈ X is an observation

Z is a discrete rv taking on values in Z
z ∈ Z is a latent assignment

the joint pdf factorises as p(x , z |θ) = p(z |θ)p(x |z , θ)

p(z |θ) is called the prior

p(x |z , θ) is called the observational model

p(x |θ) is the marginal (or evidence)

and p(z |x , θ) = p(x ,z|θ)
p(x |θ) is the posterior

anything in the model can be parameterised by NNs
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Throughout, we shall assume we have N i.i.d. observations. With de-
terministic parameters θ, we can make all our arguments in terms of
a single observation x . Recall, the likelihood-function LD(θ) is just∑

x∼D log p(x |θ).

By the way, can you draw a plate diagram for our generic latent variable
model?



Exact Inference

Many models admit exact marginals

Examples (and the algorithms for marginalisation)

Mixture models (enumeration)

HMMs (forward algorithm)

CFGs (inside algorithm)

Spanning-tree random fields (matrix-tree theorem)

Tractable marginalisation depends on the conditional independence
assumptions of a model (e.g., in an HMM a hidden state is independent of
all but its preceding state), not on how that model’s probability
distributions are parameterised (e.g., a transition distribution in the HMM
may be stored in a table, predicted by a log-linear model or by an NN).

Marginalisation algorithms are generally harder to parallelise on GPUs.
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Recall that to use NNs in probabilistic models we converged to two con-
straints on the log-likelihood function:

• differentiability with respect to parameters

• and tractability

If p(z |θ) and p(x |z , θ) are differentiable functions of their parameters, there
is no impediment to gradient-based parameter estimation. Can you show
that to yourself? Hint: expand ∇θ log p(x |θ).

Tractability depends on whether p(x |θ) =
∑

z∈Z p(x , z |θ), or its loga-
rithm, can be evaluated in feasible time. Though it may seem so, this is
not always a matter of cardinality of Z.

For example, there is a Catalan number of trees in a CFG, yet because of
the strong independence assumptions in the model, the marginal p(x |θ) is
computable in cubic-time (w.r.t. sequence length) via the inside algorithm.
Similarly, there is an exponential number of state sequences in an HMM,
but its marginal is computable in linear-time (w.r.t. sequence length) via
the forward algorithm.



Exact Inference

Neural {MM, HMM, CFG, CRF, . . . }

An NN-parameterisation of a classic discrete LVM, for which exact
marginals are tractable, still needs to preserve all of that model’s statistical
assumptions about unobserved random variables.

We won’t necessarily achieve a more complex distribution.

Though we may condition on complex data more effectively.

A neural HMM could look like:
p(x |θ) =

∑
z∈{1,...,K}|x|

∏|x |
i=1 p(zi |zi−1, x<i , θ)︸ ︷︷ ︸

Cat(zi |g(x<i ,zi−1;θ))

p(xi |zi , x<i )︸ ︷︷ ︸
Cat(xi |f (x<i ,zi ;θ))

the entire history of already generated words is available for conditioning
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NNs allow us to condition on complex observations, like a long history of
words x<i in unsupervised part-of-speech tagging.

We cannot, as easily, exploit that power to relax statistical conditional
independence assumptions, for those assumptions are crucial in order to
maintain exact and tractable access to marginal probabilities.

Think of it this way, what makes the HMM the HMM is the first-order (or
n-order) Markov assumption Zi ⊥ Zj |Zi−1 for j other than i and i − 1.
Relaxing that turns the HMM into something else, for which exact inference
is likely impossible. See Wang et al. (2018) for a neural HMM.



Exact Inference

Gradient-based MLE

What happens when we autodiff the quantity log p(x |θ), which we
computed exactly and tractably?

Let’s inspect this gradient ourselves ∇θ log p(x |θ)

=
1

p(x |θ)
∇θp(x |θ) =

1

p(x |θ)
∇θ

∑
z∈Z

p(z , x |θ)

=
1

p(x |θ)

∑
z∈Z

∇θp(z , x |θ) =
1

p(x |θ)

∑
z∈Z

p(z , x |θ)∇θ log p(z , x |θ)

=
∑
z∈Z

p(z , x |θ)

p(x |θ)
∇θ log p(z , x |θ) =

∑
z∈Z

p(z |x , θ)∇θ log p(z , x |θ)

=Ep(z|x,θ) [∇θ log p(z , x |θ)]

Autodiff performs exact posterior inference for us!
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Gradient of log-marginal

• It all starts with the derivative of log, followed by chain rule again.

• The next step requires marginalisation.

• Now we need the gradient of a big sum.

• Derivatives are linear, so we can sum gradients instead.

• Sums are fine, but let’s use the log identity f ′ = f (log f )′

• The marginal is constant for z ∈ Z, so distribute it over the sum.

• This gives us a recognisable object! Joint probability, divided by
evidence, that’s the posterior! And we have a weighted average,
coefficients given by a pmf, and we sum over the entire support Z.

• We have an expectation! The gradient of the log-marginal of x is
the expected gradient of the log joint probability of x and z , where
x is observed and z is a draw from the posterior distribution Z |x , θ.
Dependency on Z makes the gradient of log-joint
G (Z ) = ∇θ logP(Z ,X = x) a random variable.

• The gradient of the log-marginal ∇θ log p(x |θ) is deterministic, it is
the expected value EZ |X=x,θ[G (Z )]. You evaluate the marginal,
autodiff evaluates the expectation.
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Exact Inference

Summary

Many discrete LVMs admit tractable marginalisation

Assessing the gradient of the log-marginal probability of an observation
corresponds to assessing an expectation under the posterior distribution
over latent variables. Think of it this way:

we need posterior inference to compute the gradient

and we need the gradient for parameter estimation

with exact marginals, autodiff assesses the gradient
thus abstracting posterior inference away

What happens when we cannot solve
∑

z∈Z p(x , z |θ)?
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Many interesting models are such that the exact marginal is intractable.
We’ve seen, for example, the case where p(x , z |θ) is a latent factor model.

Autodiff cannot differentiate a quantity that cannot be assessed. So if we
cannot compute the exact log-marginal probability of an observation, we
won’t get automatic posterior inference for free. We will have to resort to
rather explicit approaches to approximate inference.
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Variational Inference

Latent factor document model

Let us consider a latent factor model for document modelling:

a document x = (x1, . . . , xn) consists of n i.i.d. categorical draws
from that model

the categorical distribution in turn depends on binary latent factors
z = (z1, . . . , zD) which are also i.i.d.

Zj ∼ Bernoulli(α) (1 ≤ d ≤ D)

Xi |z ∼ Categorical (f (z ; θ)) (1 ≤ i ≤ n)

Here 0 < α < 1 specifies a Bernoulli prior
and f (·; θ) is a function computed by an NN, e.g.:

f (z ; θ) = softmax(Wz + b)

θ = {W , b}
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To keep the model simple we will assume Xi ⊥ Xj |Z for i 6= j . We could,
however, relax this conditional independence if we wanted. For example,
we could model Xi |z , x<i ∼ Cat(f (z , x<i ; θ)).

We could model any multivariate and/or structured data: e.g., an image
x as a collection of pixel intensities along different colours, a molecule as
a graph, a gene as a sequence of symbols, etc.



Variational Inference

Graphical model

x1 x2 x3 x4

z1 z2 z3

α

Joint distribution: independent latent variables
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Suppose, for example, D = 3 and n = 4.

I omit θ from the graphical model, but every Xi |z depends on it.



Variational Inference

Intractable Marginals

In the latent factor model, marginalisation takes time O(2D)

p(x |α, θ) =
∑

z∈{0,1}D
p(z |α)p(x |z , θ)

=
∑

z∈{0,1}D

D∏
d=1

Bern(zd |α)
n∏

i=1

Cat(xi |f (z ; θ))

As a consequence, we cannot assess log p(x |α, θ) nor its gradient.

But we know that

∇θ log p(x |α, θ) = Ep(z|x ,α,θ)[∇θ log p(x , z |α, θ)]
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Unfortunately, we cannot count on autodiff to solve the expectation for us
in this case.

Perhaps we can estimate the gradient?



Variational Inference

Gradient estimates?

Monte Carlo to the rescue?

∇θ log p(x |θ) = Ep(z|x ,θ) [∇θ log p(x , z |θ)]

MC
≈ 1

K

K∑
k=1

∇θ log p(x , z(k)|θ) where z(k) ∼ p(z |x , θ)

Hold on, the posterior is not available either!

p(z |x , θ) =
p(x , z |θ)

p(x |θ)

I am omitting α, the prior parameter. For simplicity, assume it is fixed.
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Variational Inference

The Basic Problem

We want to compute the posterior over latent variables p(z |x , θ). This
involves computing the marginal likelihood

p(x |θ) =
∑
z∈Z

p(x , z |θ)

which is generally intractable. This problem motivates the use of
approximate inference techniques.
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You may think all we really need is the marginal and we shouldn’t bother
about the posterior. I’d argue there’s barely a difference. Probabilistic
inference (i.e., computations involving probability calculus) is the core of
the problem. Sometimes we see it as the need for a marginal, sometimes
as the need for a posterior.



Variational Inference

Strategy

Variational Inference

Accept that p(z |x , θ) is not computable.

Approximate it by an auxiliary distribution q(z) that is computable!

Choose q(z) as close as possible to p(z |x , θ) to obtain a faithful
approximation.

We are going to derive VI’s objective from two points of view

first, we will concentrate on the intractable log-marginal, and attempt
to bound it by a tractable quantity;

then we will concentrate on the intractable posterior, and attempt to
learn a tractable approximation to it;

The two views will turn out intimately related.
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This is the outline for variational inference (VI; Jordan et al., 1999; Blei
et al., 2017).

There are alternatives to VI, but they are not covered in this course. Here
are some pointers:

• Markov chain Monte Carlo (MCMC). Here is an excellent material
by Michael Betancourt: https://betanalpha.github.io/

assets/case_studies/markov_chain_monte_carlo.html.

• Expectation propagation (EP; Minka, 2001; Vehtari et al., 2020)

https://betanalpha.github.io/assets/case_studies/markov_chain_monte_carlo.html
https://betanalpha.github.io/assets/case_studies/markov_chain_monte_carlo.html
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Variational Inference Deriving VI with Jensen’s Inequality

VI derivation I

Deriving VI from the log-evidence:

log p(x |θ) = log
∑
z∈Z

p(x , z |θ)

= log
∑
z∈Z

q(z)
p(x , z |θ)

q(z)

= logEq(z)

[
p(x , z |θ)

q(z)

]
JI
≥ Eq(z)

[
log

p(x , z |θ)

q(z)

]
This is the lowerbound on the log-evidence, also known as ELBO.
Crucially, it does not require the true posterior!
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The evidence lower-bound (ELBO):

• Let’s start from the log marginal.

• And introduce q(z) such that q(z) > 0 if p(z |x , θ) > 0.

• And note we got an expectation w.r.t. q(z), and recall that, unlike
p(z |x , θ), we know q(z), as we chose it.

• And Jensen’s inequality allows us to push the log through the
expectation.
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Variational Inference Deriving VI with Jensen’s Inequality

VI derivation I

Let’s gain insight about this bound

log p(x |θ) ≥ Eq(z)

[
log

p(x , z |θ)

q(z)

]

= Eq(z)

[
log

p(z |x , θ)p(x |θ)

q(z)

]
= log p(x |θ) +

∑
z∈Z

q(z) log
p(z |x , θ)

q(z)

= log p(x |θ)−
∑
z∈Z

q(z) log
q(z)

p(z |x , θ)

= log p(x |θ)− KL (q(z) || p(z |x , θ))︸ ︷︷ ︸
≥0

We have derived a lower bound on the log-evidence whose gap is exactly
KL (q(z) || p(z |x , θ)).
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What can be said about q(z)?

• Let’s start from the ELBO.

• Now let’s factorise the joint probability using the marginal and the
posterior (these are clearly not available to us, but they will help us
understand what is going on).

• The log-marginal is constant w.r.t. z , thus its expected valued
under q(z) is itself, i.e., log p(x |θ).

• We can apply a property of logs to rearrange the fraction.

• Which gives us the KL divergence from p(z |x , θ) to q(z). Recall,
KL (q || p) ≥ 0 and equality holds only if q = p.
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Variational Inference Deriving VI from KL Divergence

VI derivation II

Derive VI by optimisation:

arg max
q(z)

− KL (q(z) || p(z |x , θ))

= arg max
q(z)

∑
z∈Z

q(z) log
p(z |x , θ)

q(z)

= arg max
q(z)

∑
z∈Z

q(z) log
p(x , z |θ)

q(z)p(x |θ)

= arg max
q(z)

∑
z∈Z

q(z) log
p(x , z |θ)

q(z)
−

constant︷ ︸︸ ︷
log p(x |θ)

= arg max
q(z)

∑
z∈Z

q(z) log p(x , z |θ)︸ ︷︷ ︸
Eq(z)[log p(x,z|θ)]

−
∑
z∈Z

q(z) log q(z)︸ ︷︷ ︸
−H(q(z))
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The previous derivation suggests that we should attempt to choose q(z)
such that the gap relative to the true posterior KL (q(z) || p(z |x , θ)) is as
small as possible.

• Let’s state that objective explicitly and seek some optimum q(z).

• We do not have access to the true posterior probability of any z ,
thus let’s decompose it via Bayes rule.

• Bayes rule reveals the marginal. Note that p(x |θ) does not depend
on z .

• Nor it depends on our choice of q(z).

• The final objective involves only joint densities (always tractable, by
assumption), and q(z).
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q(z) log q(z)︸ ︷︷ ︸
−H(q(z))
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The previous derivation suggests that we should attempt to choose q(z)
such that the gap relative to the true posterior KL (q(z) || p(z |x , θ)) is as
small as possible.

• Let’s state that objective explicitly and seek some optimum q(z).

• We do not have access to the true posterior probability of any z ,
thus let’s decompose it via Bayes rule.

• Bayes rule reveals the marginal. Note that p(x |θ) does not depend
on z .

• Nor it depends on our choice of q(z).

• The final objective involves only joint densities (always tractable, by
assumption), and q(z).
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ELBO

The evidence lowerbound (ELBO) is the optimisation objective in
variational inference.

arg max
q(z)

Ex∼D
[
Eq(z) [log p(x , z |θ)] + H (q(z))

]
=arg max

q(z)
Ex∼D

[
Eq(z) [log p(x |z , θ)]− KL (q(z) || p(z))

]
The ELBO circumvents intractable posterior inference by optimisation: we
search the approximate posterior that is closest to the true posterior in
terms of KL (q(z) || p(z |x , θ)). For example, if q(z |λ) is in a certain
parametric family, we search for its parameter.
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ELBO highlights

• we get to design q(z), so for example, while the true posterior of a
latent factor model depends on an intractable marginalisation, the
approximate posterior q(z) might simply combine D independent
Bernoulli distributions (one per latent factor);

• as we get to pick q(z), we get to choose a family that’s convenient,
for example, one for which we can obtain independent samples;

• tractable samples from q(z) means that we can obtain MC
estimates of the ELBO;

• that’s because for some given z ∈ Z, the ELBO only requires
assessing the joint density log p(x , z |θ) and log q(z);

• ideally, we would choose a family for which the entropy is also
tractable.

Can you show to yourself that the second expression is true?

• if p(z) and q(z) are in the same (exponential) family, chances are
the term KL (q(z) || p(z)) is known in closed form;
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Designing a tractable approximation

Mean field approximation:

make all latent variables independent under q(z).

pick a parametric family with tractable pmf.
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For example, in the latent factor model this takes the form:

q(z |λ) =
D∏

d=1

q(zd |λd)

=
D∏

d=1

Bern(zd |λd)

where λ is a vector that specifies D Bernoulli parameters.
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Mean Field Latent Factor Model Inference

x1 x2 x3 x4

z1

λ1

z2

λ2

z3

λ3

Zd |λ ∼ Bernoulli(λd)
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Instead of inferring the true posterior pZ |X=x , a computation that takes

assessing the marginal probability pX (x |θ), and thus requires all 2D assess-
ments of the joint density pXZ (x , z |θ), we optimise exactly D parameters.
One per Bernoulli factor in the posterior approximation q(z |λ).

Clearly, such independence assumption is a strong simplification. In some
cases we need to design structured approximate posteriors, that is, approx-
imations that can correlate latent variables (we will hear more about those
later).
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Amortised variational inference

Amortise the cost of inference using NNs

q(z1, . . . , zD |λ, x) =
D∏

d=1

qλ(zd |λ, x)

still mean field
Zd |λ, x ∼ Bernoulli(bd)

but with a shared set of parameters

where bD1 = NN(x ;λ)
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The true posterior pZ |X=x follows from conditioning on observed x .

With NNs, we can condition on complex data efficiently, thus it seems like
an interesting idea to jointly parameterise the independent factors of the
posterior approximation q(z |x , λ).

This leads to fewer parameters (more latent variables will not demand more
parameters) and has a potentially useful by-product: an inference model,
that is, a model of the distribution of the latent variable.

Recall our notion of model: a mechanism to predict the outcomes of a
random experiment. So far, we’ve been attempting to model outcomes of
some joint distribution p(x , z |θ). In variational inference, we introduce a
rather unusual model, i.e., q(z |x , λ), it predicts another model’s posterior
inferences.



Overview

Joint distribution

x1 x2 x3 x4

z1 z2 z3

Posterior

x1 x2 x3 x4

z1 z2 z3

Mean field

x1 x2 x3 x4

z1

λ1

z2

λ2

z3

λ3

Amortised VI

x1 x2 x3 x4

z1 z2 z3

λ

Joint distribution: latent variables are independent a priori. This is a model
assumption.

Posterior: latent variables are correlated. That is because for any z ∈ Z
the value p(z |x , θ) depends on p(x , z ′|θ) for all z ′ ∈ Z via p(x |θ).

Mean field approximation: we postulate a simple distribution over latent
variables, e.g., where every variable is controlled by an independent distri-
bution. The parameters of these distributions are chosen to maximise the
ELBO.

Amortised VI: we design a probabilistic model of the latent variables. That
is, we design a tractable model that maps from observations to an approx-
imation of the true posterior distribution. This inference model is typically
parameterised by an inference (neural) network, its parameters are too es-
timated to maximise the ELBO.



Variational Inference Deriving VI from KL Divergence

Summary

Posterior inference is often intractable because the marginal (or
evidence) p(x |θ) cannot be computed efficiently.

Variational inference approximates the posterior p(z |x , θ) with a
simpler distribution q(z).

The variational objective is the evidence lower bound (ELBO):

Eq(z) [log p(x , z |θ)] + H (q(z))

The solution to the ELBO minimises KL (q(z) || p(z |x , θ))
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There’s an interesting special case of VI which is likely familiar to you.
When q(z) = p(z |x , θ) we recover EM. Check the (optional) Appendix.
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Summary

We design q(z) to be simple

A common approximation is the mean field approximation which
assumes that all latent variables are independent:

q(z |λ) =
D∏

d=1

q(zd |λd)

In amortised VI, we condition on a data point x to parameterise a
collection of variational factors

∏D
d=1 q(zd |x , λ) and we typically use

NNs for that.
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Neural variational inference

Variational Inference Learning (NVIL)

Train a deep latent variable model with using amortised variational
inference.

λ∗, θ∗ = arg max
λ,θ

Ex∼D

Eq(z|x ,λ)

[
log

p(x , z |θ)

q(z |x , λ)

]
︸ ︷︷ ︸

ELBOx (λ,θ)


Approach parameter estimation via stochastic gradient-based optimisation.
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Now we discuss the concrete case of training deep discrete latent variable
models with amortised variational inference.

The main difference with respect to VI as we saw is that we will be learning
the inference model q(z |x , λ) along with the joint distribution p(x , z |θ).

Concretely, we will use gradient-based optimisation to update λ and θ
towards a (local) maximum of the ELBO.

The ELBOD(λ, θ), just like the log-likelihood function LD(θ), factorises
as a sum over i.i.d. observations.



Neural variational inference

Generative model

Again, let’s take the latent factor document model as an example:

a document x = (x1, . . . , xn) consists of n i.i.d. categorical draws
from that model

the categorical distribution in turn depends on binary latent factors
z = (z1, . . . , zD) which are also i.i.d.

Zd ∼ Bernoulli (α) (1 ≤ d ≤ D)

Xi |z ∼ Categorical (f (z ; θ)) (1 ≤ i ≤ n)

Here 0 < α < 1 specifies a Bernoulli prior (assume fixed)
and f (·; θ) is a function computed by an NN

f (z ; θ) = softmax(Wz + b)

θ = {W , b}
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We’ve chosen a very shallow NN for the observational model. It’s just an
affine transformation and softmax (a log-linear model).

Nothing prevents us from using a more complex model, both in terms of
parameterisation (e.g., a deeper FFNN) and statistical assumptions (e.g.,
a factorisation of the sequence x without Markov assumptions).



Neural variational inference

Example Model

x1 x2 x3 x4

z1 z2 z3

α

Joint distribution: independent latent variables
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I omit θ from the graphical model, but recall that every Xi |θ, z in the joint
distribution depends on it. Moreover, every Zd |θ, x in the true posterior
distribution also depends on it.



Neural variational inference

Example Model

x1 x2 x3 x4

z1 z2 z3

Posterior: latent variables are marginally dependent.

For our variational distribution we are going to assume that they are not
(recall: mean field assumption).
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I omit θ from the graphical model, but recall that every Xi |θ, z in the joint
distribution depends on it. Moreover, every Zd |θ, x in the true posterior
distribution also depends on it.
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Mean Field Inference

x1 x2 x3 x4

z1 z2 z3

λ

The inference network needs to predict D Bernoulli parameters bD1 . Any
neural network with sigmoid output will do that job.

Deep Learning 2 @ UvA Discrete LVMs 46 / 83

The inference model is independent of θ.

That is the whole point, rather than actually inferring the true posterior, we
want to independently estimate a model to perform approximate inference.



Neural variational inference

Inference Model

Model

q(z |x , λ) =
D∏

d=1

Bern(zd |bd)

where bD1 = g(x ;λ)

Example architecture (inference network)

h =
1

n

n∑
i=1

Exi bD1 = sigmoid(Mh + c)

λ = {E ,M, c}
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Some will call q(z |x , λ) the inference network or recognition network. To
be consistent with the vocabulary we’ve developed so far, I prefer calling
the distribution Z |X = x , λ an inference model. The inference network
then is the NN architecture that parameterises the inference model. The
term recognition network comes from the literature around Wake-Sleep
(WS; Hinton et al., 1995), a heuristic form of VI that we discuss in the
(optional) Appendix.

In this example, the inference network is very shallow: we embed the
words using an embedding matrix E , combine them into an average h,
project that to D real values via an affine transformation Mh + c , and use
elementwise sigmoid to map each of those to he interval (0, 1), necessary
for the Bernoulli distributions. Nothing prevents us from using a more
complex architecture, for example: we could encode the entire document
using an LSTM and use the LSTM’s last hidden state instead of the average
of embeddings.

Making the inference model more complex, for example to correlate the
latent assignments, is harder. But, if we knew a more complex model
whose pmf is tractable (to assess and to sample from) we could use it
instead. Can you think of any?



Neural variational inference

Objective

Let’s concentrate on a single observation x ∈ D:

ELBOx(λ, θ) = Eq(z|x ,λ)

[
log

p(x , z |θ)

q(z |x , λ)

]
= Eq(z|x ,λ) [log p(x , z |θ)] + H (q(z |x , λ))

= Eq(z|x ,λ) [log p(x |z , θ)]− KL (q(z |x , λ) || p(z))

Parameter estimation

arg max
θ,λ

Eq(z|x ,λ) [log p(x |z , θ)]− KL (q(z |x , λ) || p(z))
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Here I list all 3 forms of the ELBO for a single data point. Generally, we
need to pick a family for which we can sample from Z |X = x , λ and assess
the probability of a sample.

1. The first form is convenient when that is precisely all we can do.

2. The second form is convenient when in addition to that we can
assess the entropy H(Z |X = x , λ).

3. The last form is convenient when p(z) and q(z |x , λ) are in the same
exponential family.

Let’s focus on the 3rd form for now, as it suffices to illustrate all challenges
and the solutions we will develop. We have two terms, let’s call them the
expected likelihood term and the KL term, for brevity.

Our goal for the rest of this section is to compute ∇θ and ∇λ, or at least
unbiased estimates thereof, as we need those for optimisation.



Neural variational inference

KL term

KL between D independent Bernoulli distributions is tractable

KL (q(z |x , λ) || p(z |α)) =
D∑

d=1

KL (q(zd |x , λ) || p(zd |α))

=
D∑

d=1

KL (Bernoulli (bd)) || Bernoulli (α))

=
D∑

d=1

bd log
bd
α

+ (1− bd) log
1− bd
1− α
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In our example, the prior is a product of D independent Bernoulli distribu-
tions. Similarly, the inference model is a product of D independent distri-
butions. This means that the KL term is a sum of D independent KL terms.
Moreover, each KL (Zd |X = x , λ || Zd |α) is known analytically, since both
distributions are in the same exponential family (i.e., the Bernoulli family).

Being able to solve this expression in closed-form and with a computation
that scales linearly in D means that there’s no challenge in representing the
KL term in a computation graph, and autodiff will be able to differentiate
it with respect to λ (and even with respect to α should our prior not be
fixed).



Neural variational inference

Updating the generative model

∂

∂θ

Eq(z|x ,λ) [log p(x |z , θ)]−
constant wrt θ︷ ︸︸ ︷

KL (q(z |x , λ) || p(z))



= Eq(z|x ,λ)

[
∂

∂θ
log p(x |z , θ)

]
︸ ︷︷ ︸

expected gradient :)

MC
≈ 1

S

S∑
s=1

∂

∂θ
log p(x |z(s), θ) where z(s) ∼ q(z |x , λ)

Monte Carlo (MC) estimation gives us a gradient estimate with a
computation that does not depend on the size of Z.
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Updating the generative model is actually rather simple

• The second term is constant in this case, and poses no challenge.
Even if it depend on θ, that is, if the prior depended on θ, as long
as we can evaluate the KL term, autodiff would differentiate it for
us. The first term seems less obvious, after all, we cannot solve the
expected value in closed-form (it would take a sum over z ∈ Z.
Avoiding this sum is the whole point.

• But note that the distribution we take expectations with respect to
is the inference model q(z |x , λ), which does not depend on θ. As
derivatives are linear, we compute an expected derivative instead of
differentiating an expected value.

• Expected values are great for we know how to estimate them
without bias. More often than not we use a single sample per
observation.
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Neural variational inference

Updating the inference model

∂

∂λ

Eq(z|x ,λ) [log p(x |z , θ)]−
analytical︷ ︸︸ ︷

KL (q(z |x , λ) || p(z))



=
∂

∂λ
Eq(z|x ,λ) [log p(x |z , θ)]− ∂

∂λ
KL (q(z |x , λ) || p(z))︸ ︷︷ ︸
analytical computation

The first term again requires approximation by sampling, but there is a
problem
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Updating the inference model is not as simple

• The KL term is tractable to assess, thus autodiff will handle it, and
we don’t need to worry about the exact form of the gradient.

• The first term requires an intractable sum over z ∈ Z which we
mean to avoid. Unfortunately this time we cannot simply ‘push’ the
derivative inside as the expectation is taken w.r.t. q(z |x , λ), which
clearly depends on λ.
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Updating the inference model is not as simple

• The KL term is tractable to assess, thus autodiff will handle it, and
we don’t need to worry about the exact form of the gradient.

• The first term requires an intractable sum over z ∈ Z which we
mean to avoid. Unfortunately this time we cannot simply ‘push’ the
derivative inside as the expectation is taken w.r.t. q(z |x , λ), which
clearly depends on λ.
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MC is not differentiable

∂

∂λ
Eq(z|x ,λ) [log p(x |z , θ)]

=
∂

∂λ

∑
z

q(z |x , λ) log p(x |z , θ)

=
∑
z

∂

∂λ
(q(z |x , λ)) log p(x |z , θ)︸ ︷︷ ︸
not an expectation

MC estimator is non-differentiable

Differentiating the expression does not yield an expectation: cannot
approximate via MC
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Unfortunately, we cannot turn to MC either, as we can only MC estimate
expected values, and the derivative of the expected likelihood term does
not seem to be an expected value.

• Writing the expected likelihood explicitly we can see that though we
can sum derivatives, as differentiation is linear, we cannot hope to
evaluate all |Z| terms in our lifetime.

• This shows that in general we cannot differentiate an MC estimate.
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Score Function Estimator

We can again use the log identity for derivatives

∂

∂λ
Eq(z|x ,λ) [log p(x |z , θ)]

=
∑
z

∂

∂λ
(q(z |x , λ)) log p(x |z , θ)

=
∑
z

q(z |x , λ)
∂

∂λ
(log q(z |x , λ)) log p(x |z , θ)

= Eq(z|x ,λ)

[
log p(x |z , θ)

∂

∂λ
log q(z |x , λ)

]
︸ ︷︷ ︸

expected gradient :)

We turned the derivative of an expectation into the expected value of a
derivative!
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It turns out we’ve already seen this form of gradient when we derived the
general form of ∇θ log p(x |θ) for models with tractable marginals.

• We can use the log identity for derivatives (i.e., f ′ = f (log f )′) to
re-express the sum as an expectation with respect to q(z |x , λ).

• This estimator is known as the score function estimator.



Neural variational inference

Score Function Estimator

We can again use the log identity for derivatives

∂

∂λ
Eq(z|x ,λ) [log p(x |z , θ)]

=
∑
z

∂

∂λ
(q(z |x , λ)) log p(x |z , θ)

=
∑
z

q(z |x , λ)
∂

∂λ
(log q(z |x , λ)) log p(x |z , θ)

= Eq(z|x ,λ)

[
log p(x |z , θ)

∂

∂λ
log q(z |x , λ)

]
︸ ︷︷ ︸

expected gradient :)

We turned the derivative of an expectation into the expected value of a
derivative!

Deep Learning 2 @ UvA Discrete LVMs 53 / 83

It turns out we’ve already seen this form of gradient when we derived the
general form of ∇θ log p(x |θ) for models with tractable marginals.

• We can use the log identity for derivatives (i.e., f ′ = f (log f )′) to
re-express the sum as an expectation with respect to q(z |x , λ).

• This estimator is known as the score function estimator.



Neural variational inference

Score Function Estimator

We can again use the log identity for derivatives

∂

∂λ
Eq(z|x ,λ) [log p(x |z , θ)]

=
∑
z

∂

∂λ
(q(z |x , λ)) log p(x |z , θ)

=
∑
z

q(z |x , λ)
∂

∂λ
(log q(z |x , λ)) log p(x |z , θ)

= Eq(z|x ,λ)

[
log p(x |z , θ)

∂

∂λ
log q(z |x , λ)

]
︸ ︷︷ ︸

expected gradient :)

We turned the derivative of an expectation into the expected value of a
derivative!

Deep Learning 2 @ UvA Discrete LVMs 53 / 83

It turns out we’ve already seen this form of gradient when we derived the
general form of ∇θ log p(x |θ) for models with tractable marginals.

• We can use the log identity for derivatives (i.e., f ′ = f (log f )′) to
re-express the sum as an expectation with respect to q(z |x , λ).

• This estimator is known as the score function estimator.



Neural variational inference

Score Function Estimator

We can again use the log identity for derivatives

∂

∂λ
Eq(z|x ,λ) [log p(x |z , θ)]

=
∑
z

∂

∂λ
(q(z |x , λ)) log p(x |z , θ)

=
∑
z

q(z |x , λ)
∂

∂λ
(log q(z |x , λ)) log p(x |z , θ)

= Eq(z|x ,λ)

[
log p(x |z , θ)

∂

∂λ
log q(z |x , λ)

]
︸ ︷︷ ︸

expected gradient :)

We turned the derivative of an expectation into the expected value of a
derivative!

Deep Learning 2 @ UvA Discrete LVMs 53 / 83

It turns out we’ve already seen this form of gradient when we derived the
general form of ∇θ log p(x |θ) for models with tractable marginals.

• We can use the log identity for derivatives (i.e., f ′ = f (log f )′) to
re-express the sum as an expectation with respect to q(z |x , λ).

• This estimator is known as the score function estimator.



Neural variational inference

Score Function Estimator

We can now build an MC estimator

∂

∂λ
Eq(z|x ,λ) [log p(x |z , θ)]

= Eq(z|x ,λ)

[
log p(x |z , θ)

∂

∂λ
log q(z |x , λ)

]

MC
≈ 1

S

S∑
s=1

log p(x |z(s), θ)
∂

∂λ
log q(z(s)|x , λ)

where z(s) ∼ q(z |x , λ)
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And, as always, expected gradients can be estimated free of bias via MC.
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Computation Graph

x

b

λ

inference network

z ∼ Bernoulli (b)

log p(x |z)

θ

generative network

KL

α

log q(z |b)

log p(x |z)

log p(x |z)
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Let’s put everything together in a computation graph

• we map an observation x to the parameters b of our inference
model, this uses an NN with parameters λ;

• with b we can parameterise Bernoulli distributions (in our example),
from which we know how to obtain independent samples;

• besides, we have our main neural network, which maps from z to the
log-probability log p(x |z , θ), this is a quantity that depends on θ and
whose gradient we need in order to update the generative model;

• with b and the prior parameter α, we can assess
KL (q(z |x , λ) || p(z |α)), whose gradient we need in order to update
the inference model;

• finally, to update the inference model we also need the score
function estimator, which is log p(x |z , θ)∇λ log q(z |x , λ); to obtain
that gradient using autodiff we need to get a gradient for
log q(z |x , λ) and scale it by the log-likelihood log p(x |z , θ); we can
do that if we can achieve that by multiplying log q(z |x , λ) and a
‘detached’ (constant) version of log p(x |z , θ);
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Stochastic surrogate objectives

A computation node whose gradient estimates the gradient we want:

log p(x |z , θ)− KL (q(z |x , λ || p(z |α)) + log p(x |z , �θ)︸ ︷︷ ︸
‘detached’

log q(z |x , λ)

Can you verify ∇θ,λ of the surrogate objective yields the correct partials?
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Implementation goal: we want a forward pass whose backward estimates
∇λ,θ ELBOx(λ, θ).

That is, a quantity whose gradient w.r.t. λ, θ as computed by an auto-
matic differentiation algorithm yields the correct partial derivatives for the
generative and the inference model.

To implement this efficiently, we resort to the notion of a ‘detached’ com-
putation node. That is, a node whose value is interpreted as a constant (its
outputs are disconnected from NN parameters during back-propagation).
For brevity, we will denote this by crossing the parameter out (e.g., �θ).
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Score Function Estimator: Variance

∂

∂λ
Eq(z|x,λ) [log p(x |z , θ)] = Eq(z|x,λ)

[
log p(x |z , θ)

∂

∂λ
log q(z |x , λ)

]

Empirically this estimator often exhibits high variance.

the magnitude of log p(x |z , θ) varies widely

the model likelihood does not contribute to direction of gradient
(it only scales the gradient)
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We can get gradient estimates and they are unbiased, but they are too
noisy to be useful out of the box.

How can we reduce the variance of an estimator?
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Score Function Estimator: Variance

We could:

sample more (better MC estimates)

use variance reduction techniques (e.g. baselines and control variates)
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Sampling more is not a very efficient way to reduce variance, as the variance
drops with the square root of the number of samples.

Perhaps we can do better with less computation?
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Score Function Estimator: Variance

Idea: standardise the “reward” r(z) := log p(x |z , θ) to have a mean at 0
and a variance of 1

Keep a moving average of the mean and variance log p(x |z , θ): µ̂ and

σ̂2.

r̂(z) = log p(x |z,θ)−µ̂
σ̂2

It can be shown that

∂

∂λ
Eq(z|x,λ) [log p(x |z , θ)] = Eq(z|x,λ)

[
log p(x |z , θ)

∂

∂λ
log q(z |x , λ)

]
= Eq(z|x,λ)

[
r̂(z)

∂

∂λ
log q(z |x , λ)

]
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To understand why this is true, we need to learn more about control variates
(Greensmith et al., 2004). You can see the (optional) Appendix.

In reinforcement learning, µ̂ is also known as a baseline. Score function
estimation along with baselines is what is known as REINFORCE (Williams,
1992).
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Score Function Estimator: Variance

We can show that using these baselines does not bias the estimator.

We can add more advanced control variates and other baselines to
further reduce variance.

More about this in the (optional) Appendix.
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Back to the KL term

We can easily relax our constraints about the tractability of the KL term.
In general, we could have the approximate posterior and the prior in
different families, and the prior could even depend on θ.

Recall that

KL (q(z |x , λ) || p(z |θ)) = Eq(z|x ,λ)

[
log

q(z |x , λ)

p(z |θ)

]
If this quantity is not tractable we can work with gradient estimates of it:

∇θ KL (q(z |x , λ) || p(z |θ)) = Eq(z|x ,λ) [−∇θ log p(z |θ)]

∇λ KL (q(z |x , λ) || p(z |θ)) = Eq(z|x ,λ)

[
log

q(z |x , λ)

p(z |θ)
∇λ log q(z |x , λ)

]
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By rewriting the KL term as an expectation we can see that its gradient
w.r.t. θ is indeed the expected value of a gradient, which we can MC-
estimate directly.

For the gradient w.r.t. λ, we again need to use the score function estimator,
which re-expressed the gradient as an expected value, for which then MC
estimation is possible.

It is an interesting exercise to show to yourself that the expression for
∇λ KL (q(z |x , λ) || p(z |θ)) indeed holds.
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Pros and Cons

Pros:

Applicable to all distributions

Many libraries come with samplers for common distributions

Cons:

High Variance!
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Unfortunately, for discrete latent variables there is not alternative. Com-
bating the cons takes studying and deploying variance reduction techniques
such as control variates (Gu et al., 2016; Tucker et al., 2017; Grathwohl
et al., 2018), Rao-Blackwellization (Liu et al., 2019), as well as other tech-
niques developed in reinforcement learning literature (Rennie et al., 2017;
Schulman et al., 2017).

Mohamed et al. (2019) present an extensive survey.

NVIL’s original paper (Mnih and Gregor, 2014). The same ideas power
black-box inference outside the context of deep learning (Ranganath et al.,
2014). Mnih and Rezende (2016) present an extension based on multiple-
sample MC estimates.
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Summary

One objective, two purposes.

Use ELBO to estimate the parameters of the inference model (i.e., for
approximate posterior inference)

Use ELBO—as a proxy to the log-likelihood function—to estimate the
parameters of the generative model.

Gradient estimation for the generative model is simple.

Gradient estimation for the inference model requires score function
estimation, which is cursed with high variance.

Stochastic surrogate objectives give us a forward node whose
backward estimates the gradient we need for optimisation.

Reward standardisation helps obtain a useful gradient estimator.
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Diagnostics

I trained my first discrete LVM, but does it work?

Well, you gotta know where to look :-)

Track validation ELBO, distortion (D), and rate (R).

I (X ;Z ) ≤ R, if rate is low the latent is not informative.

For a generative model, Ex∼D[p(z |x)] should match the prior. Thus
for an approximate posterior it is worth tracking K, which should be
small. A visual check often suffices (plot a histogram of prior samples
against posterior samples for the entire dev set).

Track importance sampling estimates of the model’s log-likelihood
(after all, this is what MLE would have optimised).

Good NLL does not say much: certain likelihood functions do not
need any additional flexibility to model the data well.

We are looking for models that have large ELBO, small NLL, large R, and
very small K.

Deep Learning 2 @ UvA Discrete LVMs 64 / 83

D = −Ex∼D[log p(x |z , θ)]

R = −Ex∼D[KL ((|| q) (z |x , λ)||p(z))]

ELBO = −D − R

q(z |λ) = Ex∼D[q(z |x , λ)]

K = KL (q(z |λ) || p(z))

Hoffman and Johnson (2016); Alemi et al. (2018); Poole et al. (2019)



Diagnostics

Look for Failure Modes

Generating from prior samples should cover enough of the data space.

Generating from (approximate) posterior samples should preserve some
appreciable aspect of the seed data.

Conversely, KL (q(z |x , λ) || q(z |x ′, λ)) should be smaller the more related
the two data samples are.
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You can use nearest neighbour retrieval to help automate some of this
analysis.



Diagnostics

Final Remarks

Probabilistic models are extremely flexible tools.

They are interesting precisely because we can make choices about
unobserved aspects of the data.

Discrete latent variables are oftentimes key to revealing interpretable
structure, or to imposing some interpretable structure on a joint
distribution.

Learning discrete LVMs is challenging, but recent years have seen
amazing progress.

Join the party! Apply these models, extend them, discover problems
with their estimation/evaluation, investigate solutions.

Avoid approaching LVMs wondering whether they will beat some
non-LVM NN. If such NN exists, then you are probably looking at an
aspect of the problem that does not require latent variables.
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What next?

Next week we talk about deep latent variable models with continuous
random variables (a.k.a. VAEs).
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